hls-performance-thesis/code/fpga/plot_opt_comparison.py

148 lines
5.6 KiB
Python
Raw Normal View History

2021-07-03 15:59:32 +00:00
import argparse
import matplotlib as mpl
mpl.use('TkAgg')
import matplotlib.pyplot as plt
import numpy as np
import json
import glob
from scipy.integrate import simps
kernel_name_map = {
"cpu": "reference CPU application",
"unopt": "reference FPGA kernel",
"memory": "memory optimized kernel",
"ndrange": "NDRange optimized kernel",
"final": "fully optimized kernel"
}
cmap = plt.get_cmap('viridis')
colors = [cmap(i) for i in np.linspace(0, 1, 3)]
def main(corpora, sizes, lengths, optdir, unoptdir, cpudir, save, count, kernel):
plt.style.use('seaborn')
optresults = parse_fpga_results(corpora, sizes, lengths, optdir)
unoptresults = parse_fpga_results(corpora, sizes, lengths, unoptdir)
cpuresults = parse_cpu_results(corpora, sizes, lengths, cpudir)
plot_throughput(optresults, unoptresults, cpuresults, corpora, lengths, save, count, kernel)
def parse_fpga_results(corpora, sizes, lengths, dir):
results = dict()
for corpus in corpora:
results[corpus] = dict()
for size in sizes:
results[corpus][size] = dict()
for length in lengths:
results[corpus][size][length] = parse_fpga_result(corpus, size, length, dir)
return results
def parse_fpga_result(corpus, size, length, dir):
resultdir = f"{dir}/{corpus}.{size}MB.len{length}"
result = []
for filepath in glob.iglob(f"{resultdir}/*"):
with open(filepath, "r") as f:
data = json.load(f)
time = data['Kernel Execution'][0]['time']
energy = get_energy_usage(data)
result.append((time/1000, energy))
return result
def get_energy_usage(data):
xs = list(map(lambda x: x["timestamp"], data["power"]))
ys = list(map(lambda y: y["power"], data["power"]))
# Get start and end timestamp of kernel execution.
start = float(data["timeline"]["START"])
end = float(data["timeline"]["END"])
# Find nearest power data points.
nearest_start = min(range(len(xs)), key=lambda i: abs(xs[i] - start))
nearest_end = min(range(len(xs)), key=lambda i: abs(xs[i] - end))
# Find power data points within kernel execution
kernel_xs = np.array(xs)[nearest_start:nearest_end+1] / 1000
kernel_ys = np.array(ys)[nearest_start:nearest_end+1]
# Use Simpson's Rule to integrate and find energy usage.
return simps(y=kernel_ys, x=kernel_xs)
def parse_cpu_results(corpora, sizes, lengths, dir):
results = dict()
for corpus in corpora:
results[corpus] = dict()
for size in sizes:
results[corpus][size] = dict()
for length in lengths:
results[corpus][size][length] = parse_cpu_result(corpus, size, length, dir)
return results
def parse_cpu_result(corpus, size, length, dir):
def parse_line(line):
[range_time, index_time, total_matches] = line.split(" ")
return (float.fromhex(range_time), float.fromhex(index_time), int(total_matches))
filename = f"{dir}/{corpus}.{size}MB.cpu{length}.result"
with open(filename, "r") as f:
data = list(map(parse_line, f.read().splitlines()))
return data
def plot_throughput(optresults, unoptresults, cpuresults, corpora, lengths, save, count, kernel):
width = .2
keys = np.array([[(corpus, length) for length in lengths] for corpus in corpora]).reshape(len(corpora) * len(lengths), 2)
labels = [f"({corpus}, {length})" for (corpus, length) in keys]
xs = np.arange(len(labels))
size = 20
_, ax = plt.subplots()
for i, (results, name) in enumerate([(cpuresults, "cpu"), (unoptresults, "unopt"), (optresults, kernel)]):
means = [np.mean(count / np.array(results[corpus][size][int(length)])[:, 0]) for (corpus, length) in keys]
stds = [np.std(count / np.array(results[corpus][size][int(length)])[:, 0]) for (corpus, length) in keys]
ax.bar(xs - (width*len(lengths))/2 + i * width + width/2, means, width, label=kernel_name_map[name].capitalize(), yerr=stds, color=colors[i])
ax.set_ylabel("Throughput (patterns matched/s)")
ax.set_xlabel("Corpus and pattern length")
ax.set_xticks(xs)
ax.tick_params(axis="x", rotation=25)
ax.set_xticklabels(labels)
ax.legend()
ax.set_title(f"Throughput comparison between reference applications and {kernel_name_map[kernel]}")
plt.subplots_adjust(bottom=0.16)
if save:
figure = plt.gcf()
figure.set_size_inches(9, 5)
plt.savefig(f"throughput_comparison_{kernel}.png", format="png", dpi=100)
else:
plt.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--count", help="number of patterns", type=int, required=True)
parser.add_argument("-l", "--lengths", help="length of the patterns", type=int, nargs="+", default=[], required=True)
parser.add_argument("-f", "--optdir", help="directory containing optimized FPGA results", required=True)
parser.add_argument("-u", "--unoptdir", help="directory containing unoptimized FPGA results", required=True)
parser.add_argument("-d", "--cpudir", help="directory containing CPU results", required=True)
parser.add_argument("-t", "--corpora", help="text corpora (without file size)", nargs="+", default=[], required=True)
parser.add_argument("-s", "--sizes", help="file sizes", type=int, nargs="+", default=[], required=True)
parser.add_argument("-k", "--kernel", help="kernel", required=True)
parser.add_argument("-o", "--save", help="save as PNG", action="store_true", required=False)
args = parser.parse_args()
main(args.corpora, args.sizes, args.lengths, args.optdir, args.unoptdir, args.cpudir, args.save, args.count, args.kernel)