import argparse import matplotlib as mpl mpl.use('TkAgg') import matplotlib.pyplot as plt import numpy as np import json import glob from scipy.integrate import simps kernel_name_map = { "cpu": "reference CPU application", "unopt": "reference FPGA kernel", "memory": "memory optimized kernel", "ndrange": "NDRange optimized kernel", "final": "fully optimized kernel" } cmap = plt.get_cmap('cividis') colors = [cmap(i) for i in np.linspace(0, 1, 5)] def main(corpora, sizes, lengths,save, count, unoptdir, memorydir, ndrangedir, finaldir, cpudir): plt.style.use('seaborn') unoptresults = parse_fpga_results(corpora, sizes, lengths, unoptdir) memoryresults = parse_fpga_results(corpora, sizes, lengths, memorydir) ndrangeresults = parse_fpga_results(corpora, sizes, lengths, ndrangedir) finalresults = parse_fpga_results(corpora, sizes, lengths, finaldir) cpuresults = parse_cpu_results(corpora, sizes, lengths, cpudir) # plot_throughput(cpuresults, unoptresults, memoryresults, ndrangeresults, finalresults, corpora, lengths, save, count) # plot_throughput(cpuresults, unoptresults, memoryresults, ndrangeresults, finalresults, corpora, lengths, save, count, log=True) # plot_cycles(cpuresults, unoptresults, memoryresults, ndrangeresults, finalresults, corpora, lengths, save, count) # print_energy_table(cpuresults, memoryresults, ndrangeresults, finalresults, corpora, sizes, lengths) plot_time_energy(cpuresults, finalresults, corpora, lengths, save) def parse_fpga_results(corpora, sizes, lengths, dir): results = dict() for corpus in corpora: results[corpus] = dict() for size in sizes: results[corpus][size] = dict() for length in lengths: results[corpus][size][length] = parse_fpga_result(corpus, size, length, dir) return results def parse_fpga_result(corpus, size, length, dir): resultdir = f"{dir}/{corpus}.{size}MB.len{length}" result = [] for filepath in glob.iglob(f"{resultdir}/*"): with open(filepath, "r") as f: data = json.load(f) time = data['Kernel Execution'][0]['time'] energy = get_energy_usage(data) result.append((time/1000, energy)) return result def parse_cpu_results(corpora, sizes, lengths, dir): results = dict() for corpus in corpora: results[corpus] = dict() for size in sizes: results[corpus][size] = dict() for length in lengths: results[corpus][size][length] = parse_cpu_result(corpus, size, length, dir) return results def parse_cpu_result(corpus, size, length, dir): def parse_line(line): [range_time, index_time, total_matches] = line.split(" ") return (float.fromhex(range_time), float.fromhex(index_time), int(total_matches)) filename = f"{dir}/{corpus}.{size}MB.cpu{length}.result" with open(filename, "r") as f: data = list(map(parse_line, f.read().splitlines())) return data def get_energy_usage(data): xs = list(map(lambda x: x["timestamp"], data["power"])) ys = list(map(lambda y: y["power"], data["power"])) # Get start and end timestamp of kernel execution. start = float(data["timeline"]["START"]) end = float(data["timeline"]["END"]) # Find nearest power data points. nearest_start = min(range(len(xs)), key=lambda i: abs(xs[i] - start)) nearest_end = min(range(len(xs)), key=lambda i: abs(xs[i] - end)) # Find power data points within kernel execution kernel_xs = np.array(xs)[nearest_start:nearest_end+1] / 1000 kernel_ys = np.array(ys)[nearest_start:nearest_end+1] # Use Simpson's Rule to integrate and find energy usage. return simps(y=kernel_ys, x=kernel_xs) def plot_throughput(cpuresults, unoptresults, memoryresults, ndrangeresults, finalresults, corpora, lengths, save, count, log=False): width = .15 keys = np.array([[(corpus, length) for length in lengths] for corpus in corpora]).reshape(len(corpora) * len(lengths), 2) labels = [f"({corpus}, {length})" for (corpus, length) in keys] xs = np.arange(len(labels)) size = 20 _, ax = plt.subplots() for i, (results, name) in enumerate([(cpuresults, "cpu"), (unoptresults, "unopt"), (memoryresults, "memory"), (ndrangeresults, "ndrange"), (finalresults, "final")]): means = [np.mean(count / np.array(results[corpus][size][int(length)])[:, 0]) for (corpus, length) in keys] stds = [np.std(count / np.array(results[corpus][size][int(length)])[:, 0]) for (corpus, length) in keys] ax.bar(xs - (width*len(lengths))/2 + i * width + width/2, means, width, label=kernel_name_map[name].capitalize(), yerr=stds, color=colors[i]) ax.set_ylabel("Throughput (patterns matched/s)") ax.set_xlabel("Corpus and pattern length") ax.set_xticks(xs) ax.tick_params(axis="x", rotation=25) ax.set_xticklabels(labels) ax.legend() ax.set_title(f"Throughput of the reference applications and the optimized kernels") if log: ax.set_yscale('log') plt.subplots_adjust(bottom=0.16) if save: figure = plt.gcf() figure.set_size_inches(9, 5) plt.savefig(f"throughput_opts{'_log' if log else ''}.png", format="png", dpi=100) else: plt.show() def plot_cycles(cpuresults, unoptresults, memoryresults, ndrangeresults, finalresults, corpora, lengths, save, count): size = 20 fpga_clockspeed = 0.3 cpu_clockspeed = 3.4 def calculate_cycles(fpgaresults, corpus, length): result = [] length = int(length) for (fpgaresult, cpuresult) in zip(fpgaresults[corpus][size][length], cpuresults[corpus][size][length]): fpgacycles = fpgaresult[0] * fpga_clockspeed cpucycles = cpuresult[0] * cpu_clockspeed result.append(cpucycles / fpgacycles) return result width = .15 keys = np.array([[(corpus, length) for length in lengths] for corpus in corpora]).reshape(len(corpora) * len(lengths), 2) labels = [f"({corpus}, {length})" for (corpus, length) in keys] xs = np.arange(len(labels)) _, ax = plt.subplots() for i, (results, name) in enumerate([(unoptresults, "unopt"), (memoryresults, "memory"), (ndrangeresults, "ndrange"), (finalresults, "final")]): means = [np.mean(calculate_cycles(results, corpus, length)) for (corpus, length) in keys] stds = [np.std(calculate_cycles(results, corpus, length)) for (corpus, length) in keys] ax.bar(xs - (width*len(lengths))/2 + i * width + width/2, means, width, label=kernel_name_map[name].capitalize(), yerr=stds, color=colors[i]) ax.set_ylabel("Cycles CPU / FPGA") ax.set_xlabel("Corpus and pattern length") ax.set_xticks(xs) ax.tick_params(axis="x", rotation=25) ax.set_xticklabels(labels) ax.legend() ax.set_title(f"Clock cycle comparison of the FPGA kernels and the reference CPU application") plt.subplots_adjust(bottom=0.16) if save: figure = plt.gcf() figure.set_size_inches(9, 5) plt.savefig("cycles_opts.png", format="png", dpi=100) else: plt.show() def print_energy_table(cpuresults, memoryresults, ndrangeresults, finalresults, corpora, sizes, lengths): size = 20 for (results, kernel) in [(memoryresults, "memory"), (ndrangeresults, "NDRange"), (finalresults, "full")]: print(f"\\textit{{{kernel}}}", end="") for corpus in corpora: for length in lengths: cpumean = np.mean([result[1] for result in cpuresults[corpus][size][length]]) fpgamean = np.mean([result[1] for result in results[corpus][size][length]]) comp = fpgamean / (cpumean / 1000000) print(" & ${:.1f}\\times$".format(comp), end="") print(" \\\\") def plot_time_energy(cpuresults, fpgaresults, corpora, lengths, save): cmap = plt.get_cmap('viridis') colors = [cmap(i) for i in np.linspace(0, 1, 3)] size = 20 def calculate_time(fpgaresults, corpus, length): result = [] length = int(length) for (fpgaresult, cpuresult) in zip(fpgaresults[corpus][size][length], cpuresults[corpus][size][length]): result.append(fpgaresult[0] / cpuresult[0]) return result def calculate_energy(fpgaresults, corpus, length): result = [] length = int(length) for (fpgaresult, cpuresult) in zip(fpgaresults[corpus][size][length], cpuresults[corpus][size][length]): result.append(fpgaresult[1] / (cpuresult[1]/1000000)) return result width = .25 keys = np.array([[(corpus, length) for length in lengths] for corpus in corpora]).reshape(len(corpora) * len(lengths), 2) labels = [f"({corpus}, {length})" for (corpus, length) in keys] xs = np.arange(len(labels)) _, ax = plt.subplots() means = [np.mean(calculate_time(fpgaresults, corpus, length)) for (corpus, length) in keys] stds = [np.std(calculate_time(fpgaresults, corpus, length)) for (corpus, length) in keys] ax.bar(xs - width/2, means, width, label=r"time$_{FPGA}$ / time$_{CPU}$", yerr=stds, color=colors[1]) means = [np.mean(calculate_energy(fpgaresults, corpus, length)) for (corpus, length) in keys] stds = [np.std(calculate_energy(fpgaresults, corpus, length)) for (corpus, length) in keys] ax.bar(xs + width/2, means, width, label=r"energy$_{FPGA}$ / energy$_{CPU}$", yerr=stds, color=colors[2]) ax.set_ylabel("Fraction") ax.set_xlabel("Corpus and pattern length") ax.set_xticks(xs) ax.tick_params(axis="x", rotation=25) ax.set_xticklabels(labels) ax.legend() ax.set_title(f"Comparison of time and energy between the reference CPU application and fully optimized FPGA kernel") plt.subplots_adjust(bottom=0.16) if save: figure = plt.gcf() figure.set_size_inches(9, 5) plt.savefig("final_time_energy.png", format="png", dpi=100) else: plt.show() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-c", "--count", help="number of patterns", type=int, required=True) parser.add_argument("-l", "--lengths", help="length of the patterns", type=int, nargs="+", default=[], required=True) parser.add_argument("-t", "--corpora", help="text corpora (without file size)", nargs="+", default=[], required=True) parser.add_argument("-s", "--sizes", help="file sizes", type=int, nargs="+", default=[], required=True) parser.add_argument("-o", "--save", help="save as PNG", action="store_true", required=False) parser.add_argument("-u", "--unoptdir", help="directory containing unoptimized FPGA results", required=True) parser.add_argument("-m", "--memorydir", help="directory containing memory-optimized FPGA results", required=True) parser.add_argument("-n", "--ndrangedir", help="directory containing NDRange-optimized FPGA results", required=True) parser.add_argument("-f", "--finaldir", help="directory containing final FPGA results", required=True) parser.add_argument("-p", "--cpudir", help="directory containing CPU results", required=True) args = parser.parse_args() main(args.corpora, args.sizes, args.lengths, args.save, args.count, args.unoptdir, args.memorydir, args.ndrangedir, args.finaldir, args.cpudir)