
Bachelor Informatica

A Performance Analysis of High-
Level Synthesis for FPGAs

Pim Kunis

July 3, 2021

Supervisor: Ana-Lucia Varbanescu

Signed:

In
f
o
r
m
a
t
ic
a
—

U
n
iv
e
r
si
t
e
it

v
a
n
A
m
st

e
r
d
a
m

2

Abstract

It is becoming increasingly popular to use Field-Programmable Gate Arrays (FPGAs)
as hardware accelerators in order to speed up certain parts of an algorithm. FPGAs
promise more energy efficiency and increased performance compared to CPUs. They are,
however, traditionally programmed with Hardware Description Languages (HDLs), which
are notoriously hard to use.

To accelerate their adoption in different contexts and domains, FPGAs can nowadays
also be programmed with high-level languages, such as C/C++ or OpenCL, in a process
called High-Level Synthesis (HLS). However, it can be a challenge to efficiently accelerate
algorithms using HLS.

In this thesis, we investigate the performance of HLS for a non-trivial case-study. To
this end, we devise a performance comparison between a sequential CPU algorithm and its
FPGA version, programmed with OpenCL for the Xilinx Vitis platform. Our case study is a
string-searching algorithm using the FM-index method, which is able to efficiently locate
substrings in arbitrarily long texts.

Our naive reference implementation is a simple port from CPU to OpenCL. In search
for more performance, on top of this naive OpenCL implementation, we also propose and
evaluate two FPGA-specific optimizations, suggested by literature.

Our empirical analysis shows that optimizations can greatly improve the performance of
algorithms programmed with HLS for FPGAs. However, the performance of our HLS-based
FPGA version for our case study could not match the performance of the CPU, despite
being more work efficient.

3

4

Contents

1 Introduction & Research Question 7
1.1 Introduction . 7
1.2 Research Question . 8
1.3 Outline . 8

2 Background & Related Work 9
2.1 Field-programmable gate arrays . 9

2.1.1 Choosing hardware platform . 9
2.1.2 FPGA architecture . 10

2.2 OpenCL . 10
2.3 String matching algorithm . 11

2.3.1 Burrows-Wheeler transform . 11
2.3.2 FM-index . 13

2.4 Related Work . 15
2.4.1 OpenCL for high-level synthesis . 15
2.4.2 Optimizing OpenCL . 15
2.4.3 Synthesizing FM-index . 16

3 Reference Application for CPU 17
3.1 Reference implementation . 17

3.1.1 Interface . 17
3.1.2 String searching . 18
3.1.3 Burrows-Wheeler transform construction 19

3.2 Experimental setup . 19
3.3 Results . 20

4 Reference Application for FPGA 25
4.1 FPGA implementation . 25

4.1.1 Host program . 25
4.1.2 FPGA kernel . 25

4.2 Empirical evaluation . 26
4.3 Results . 27

5 Optimizations 33
5.1 Optimizations . 33

5.1.1 Memory optimizations . 33
5.1.2 OpenCL’s NDRange . 34
5.1.3 Combined optimizations . 35

5.2 Empirical evaluation . 35
5.3 Results . 35

5

6 Challenges 41
6.1 Toolchain . 41
6.2 Development process . 41

6.2.1 Software emulation . 41
6.2.2 Hardware emulation . 41
6.2.3 Hardware compilation . 42

6.3 Results gathering . 42

7 Conclusion and future work 43
7.1 Main findings . 43
7.2 Contributions . 44
7.3 Limitations and threats to validity . 44
7.4 Ethical considerations . 45
7.5 Future work . 45

A Optimized kernels 49
A.1 NDRange optimized kernel . 50
A.2 Memory-access optimized kernel . 51
A.3 Final optimized kernel . 52

6

CHAPTER 1

Introduction & Research Question

1.1 Introduction

Scientists and companies are always looking to speed up the execution of algorithms, especially
those that are slow on CPUs. One way to achieve better performance is by using accelerators
which can execute part of an algorithm faster. For example, graphical processing units (GPUs)
are a common accelerator to speed up graphics and vector processing.

A recent trend is to utilize field-programmable gate arrays (FPGAs) for hardware acceleration
and speed up parts of algorithms. An FPGA is a device with circuits that can be reprogrammed
after manufacturing. They are often compared with application-specific integrated circuits
(ASICs), which are very fast chips designed for one purpose, but cannot be reprogrammed after
manufacturing. In terms of performance and reconfigurability, FPGAs offer a good trade-off
between CPUs and ASICs: a CPU is often slower, but can be instructed to do anything, while
the specialized ASICs are much faster [27]. Another great benefit of FPGAs is the low power
consumption in comparison to CPUs and GPUs.

Traditionally, FPGAs are programmed using low-level Hardware Description Languages
(HDL) that describe the circuits needed to run an algorithm. Unlike sequential programming
languages, like C or python, HDLs use a concurrent model where data flow is done in parallel [27].
Because of the difference in programming paradigms, many computer programmers experience
difficulty programming with HDLs.

To alleviate this problem, past research has focused on High-Level Synthesis (HLS) which
aims to synthesize more high-level programming languages and models like C, Haskell or OpenCL
into programs that run on FPGAs [20]. While programming FPGAs using high-level models is
convenient and accessible, it can be challenging to efficiently synthesize algorithms.

In this project, we analyze the performance of FPGA algorithms developed using HLS. To
this end, we will analyze the Vitis HLS toolkit, developed by Xilinx.

Vitis supports several high-level languages for HLS, among which we have chosen OpenCL.
OpenCL is an open standard for heterogeneous computing, meaning it is possible to execute
programs across multiple platforms, including CPUs, GPUs, and FPGAs [17].

Our analysis is based on a detailed case-study: a full-text substring index called FM-index,
which has applications in fields including bioinformatics [21]. Using the FM-index, it is possible
to quickly find the position of any substring in an arbitrarily long text.

To evaluate the performance of the FPGA-accelerated FM-index, we compare its throughput
and energy consumption when finding patterns inside a text, against those measured for a CPU.
For this comparison, we provide a sequential CPU application as well as a reference FPGA
application. We further optimize the reference FPGA implementation, and further measure its
performance improvement against the reference versions.

7

1.2 Research Question

The goal of this work is to analyze the performance of HLS for FPGAs. Therefore, our main
research question is formulated as follows: How well does high-level synthesis perform for pro-
gramming FPGA accelerators?

To help answer this question, we formulate three subquestions:

1. How does a naive HLS-based FPGA application compare against its CPU counterpart?

2. What optimizations can improve the performance of an HLS-based FPGA application?

3. How difficult is it to develop FPGA applications using HLS?

1.3 Outline

The remainder of this thesis is organized as follows. Chapter 2 discusses theoretical background
regarding FPGAs, introduces the selected case-study for performance analysis, and provides
a short analysis of related work. In chapter 3, we present our CPU reference implementation
and analyze its performance using a comprehensive experimental setup. Chapter 4 presents our
reference implementation for the FPGA, and perform an empirical evaluation of its performance.
In chapter 5 we present and evaluate two optimizations for the reference FPGA application; we
further present the empirical evaluation of these optimizations, and a performance comparison
with the reference applications. Chapter 6 states several challenges we have encountered when
developing applications with HLS for FPGAs. Lastly, in chapter 7 we formulate our answer for
the research question, and present possible future work.

8

CHAPTER 2

Background & Related Work

In this section we provide a brief introduction to the main concepts required to understand the
remainder of this work: FPGAs and HLS, OpenCL, and the chosen case-study. Finally, we also
summarize relevant related work.

2.1 Field-programmable gate arrays

Field-programmable gate arrays (FPGAs) are devices that have circuits which can be programmed
after manufacturing [10]. In this section we explain the motivation for using FPGAs and how
they work.

2.1.1 Choosing hardware platform

Figure 2.1 shows a simplified relation between CPUs, FPGAs and Application-Specific Integrated
Circuits (ASICs) in terms of flexibility and efficiency. On the one end of the spectrum, we have
CPUs which are easy to program and can be used to perform any task. However, the CPU has
comparatively inefficient power consumption and performance. However, CPUs can be inefficient
in terms of power consumption and performance for certain applications. On the other side of
the spectrum we have ASICs, which are specialized chips, designed for one specific application.
This means the design of an ASIC must be near-perfect when fabricating, which leads to a long
time-to-market. However, the big advantage of ASICs is their efficiency: they are very energy
efficient and fast. Between these extremes of flexibility and efficiency, fits the FPGA. Compared
to CPUs, FPGA often perform more work per clock cycle as we program their circuits, instead
of software. On the other hand, programming FPGAs is often harder and compilation is slow.
Finally, FPGAs are more flexible than ASICs as they can be reprogrammed, but are slower.

Flexibility Efficiency

CPU FPGA ASIC

Figure 2.1: The relation between CPU, FPGA and ASIC in terms of flexibility and efficiency.

FPGAs are traditionally programmed using Hardware Description Languages (HDLs), such
as VHDL and Verilog [18]. These languages describe how the hardware should behave in order to
execute a specific algorithm. Because programming with HDLs requires a thorough understanding

9

of the targeted hardware, it is often a difficult task. This problem is addressed by the use
of High-Level Synthesis (HLS). Using HLS, it is possible to automatically produce a circuit
specification from a high-level language, such as C, C++ or OpenCL. This allows programmers
to exploit the efficiency of the FPGA using a more familiar language.

2.1.2 FPGA architecture

As previously explained, the internal circuits of FPGAs can be reprogrammed. We will explain
how this works, using terminology sometimes specific to Xilinx products (note: this thesis uses
Xilinx hardware).

The basic, repeating element of an FPGA is the Configurable Logic Block (CLB) [24]. The
CLB consists of several Lookup Tables (LUTs) and flip-flops. A LUT is basically a truth table
used to implement a Boolean function with N inputs. The flip-flops are small storage units that
store results between clock cycles.

The CLBs wired together are capable of implementing complex algorithms. An illustration of
the wiring of CLBs is shown in figure 2.2.

CLB CLB

CLB CLB

Figure 2.2: Several Configurable Logic Blocks (CLBs) wired together.

Modern FPGAs also have different options for memory. Physical memory chips are attached to
FPGAs to provide large amount of storage, accessible to both the FPGA and the host processor.
Faster memory is implemented as Block RAM (BRAM), located in the FPGA fabric itself.

Finally, FPGAs also include DSP blocks, which are Arithmetic Logic Units (ALUs) embedded
in the fabric of the FPGA. These are used to perform more complex arithmetic computations.

2.2 OpenCL

OpenCL is a standard for heterogeneous computing, which allows programmers to write parallelized
code to improve performance [17]. The term “heterogeneous” refers to executing programs on
different kinds of processors or cores, such as CPUs, GPUs and FPGAs.

The OpenCL standard and API are managed by the Khronos Group [22]. Hardware vendors
that support OpenCL implement the OpenCL standard for their own products (usually combining
compilers, toolchains, and run-time systems). The standard is effectively defined by four core
components: the platform model, the memory model, the execution model and the programming
model.

Platform model

OpenCL’s platform model consists of one host computer connected to one or more OpenCL
devices. The host is most often a CPU. The OpenCL devices can be divided into multiple compute
units, which are further divided into processing elements. The host submits commands to the
OpenCL devices, which run computations on the processing elements.

10

Execution model

The execution model is also divided into two parts: a host program runs on the host, while
OpenCL kernels run on the OpenCL devices.

When the host program submits a kernel to the OpenCL devices, it must specify an index
space. The index space determines how the execution can be subdivided into smaller stand-alone
parts. These parts are called work-items, and each is executed by an instance of the kernel. For
example, the execution of vector addition could be divided such that one work-items calculates
one item in the final vector. The work-items can be grouped together in work-groups, to divide
the index space in a more coarse-grained manner.

The index range supported by OpenCL is called “NDRange”. An NDRange divides the index
space into one, two or three dimensions.

Memory model

The OpenCL memory model specifies different memory regions that kernels have access to:

1. Global and constant memory : memory accessible to both the host and all work-items. In
case of constant memory, only the host program is allowed to initialize it, while work-items
can only read it.

2. Local memory : memory accessible to a single work-group. All work-items within the
work-group can access this memory. The host cannot access this memory.

3. Private memory : memory accessible only to a single work-item. The host cannot access
this memory.

Programming model

Finally, OpenCL supports two programming models: data parallel and task parallel.
In the data parallel model, OpenCL makes use the index space to parallelize execution over

the work-items. In the task parallel model, a single kernel is executed for each task, irregardless
of index space. Parallelism can instead be expressed by enqueuing multiple tasks.

2.3 String matching algorithm

A string matching algorithm is used to find a query string, called the pattern, within a much
bigger string, called the text [15]. There are two kinds of string matching algorithms: sequential
and indexed algorithms. Sequential string matching relies on the original unprocessed text, which
it traverses sequentially to find the requested pattern. Indexed string matching algorithms operate
on data structures constructed from the original text called an index. The use of specialized data
structures allows for finding a pattern without searching through the whole text. This method is
preferred in the following scenarios: Firstly, when sequentially searching the original text simply
takes to much time. Next, the text must not change often, as the whole index would have to be
rebuilt. Lastly, sufficient storage space is available to store the index.

The string matching algorithm we have chosen for our case study on the FPGA is the FM-index
invented by Ferragina and Manzini in 2000[4]. The FM-index is a so-called self-index, which
means that it is capable of reproducing the original text and its suffixes [15]. An integral part
of the efficient string matching of the FM-index is the Burrows-Wheeler transform. Both the
Burrows-Wheeler transform and the FM-index will be described in the following section.

2.3.1 Burrows-Wheeler transform

The Burrows-Wheeler transformation (BWT) is an operation on a block of text T , which produces
a permutation of the text called the Burrows-Wheeler transform T bw, first described by Burrows
and Wheeler in 1994 [1]. T bw can often be more easily compressed than the original text and,

11

interestingly, can be reversed to reproduce the original text. This section will explain how the
BWT works.

Creating T bw from a block of text can be achieved using a few simple steps, as described in
the original paper:

1. Append a special character, here $, to the original text to denote the end of the text.

2. List all rotations of the text, by putting a character from the end of the text to the front.

3. Sort the rotations in lexicographical ordering, where the special character $ has priority
over any other character.

4. T bw is acquired by taking the last column of the matrix with the sorted rotations as rows
(also known as the Burrows-Wheeler matrix).

A graphical representation of the steps of this algorithm can be seen in figure 2.3 for the text
ALALA, which will be our running example.

It may not be immediately clear how T bw can be more easily compressed than the original
text. To better see this, take for example the string

“zeven schotse scheve schaatsers schaatsen scheef”

which is transformed into

“fsenenhhaasssssvshesvshzeccccceeher tttoaaee$”

according to the ASCII character ordering. In T bw there are multiple runs of the same
character, which can be more efficiently encoded by, for example, a run-length encoder.

To understand why these runs occur in T bw, we look at the sorted rotations in figure 2.3, and
especially to the last two rows. We see that a character in the last column essentially comes
before the character in the first column. What’s more, we see that there are two places in the
text where an A precedes an L. Because we sorted the rotations starting from their first character,
there will be a run of the character A in the last column and therefore in T bw. In most texts,
there are usually only a few distinct characters that can precede a character, which results in
runs in the last column [1].

Step 1

ALALA

Step 2

ALALA$

Rotations
ALALA$

$ALALA

A$ALAL

LA$ALA

ALA$AL

LALA$A

Sorted
rotations

$ALALA

A$ALAL

ALA$AL

ALALA$

LA$ALA

LALA$A

ALL$AAStep 3 Step 4

Figure 2.3: The steps to acquire the Burrows-Wheeler transform of a block of text.

T bw can also be reversed to reproduce the original text. To this end, we recognize that we can
obtain the first column of the Burrows-Wheeler matrix by lexicographically sorting T bw. Next we
can use the principle of Last-First-Mapping (LF-mapping) to find a character in the first column,
given the same character in the last column [4]. The LF-mapping recognizes that the ordering, or
rank, of a character in the first column is the same as in the last column. We can empirically
check this by looking at the sorted rotations in figure 2.3. The first L encountered in the first
column is the same as to the first one encountered in the last column, and vice versa for the
second L.

The whole process of finding the original text is shown in figure 2.4. We start with the unique
character $ which is always the last character. Then we can find the position of $ in the first

12

column using the LF-mapping. The character preceding $ can then be obtained by looking in the
last column on the same row. These steps are performed until the last character is encountered
again and we are done.

F L
$0 A0
A0 L0
A1 L1
A2 $0
L0 A1
L1 A2

Text:
$

F L
$0 A0
A0 L0
A1 L1
A2 $0
L0 A1
L1 A2

Text:
A$

F L
$0 A0
A0 L0
A1 L1
A2 $0
L0 A1
L1 A2

Text:
LA$

F L
$0 A0
A0 L0
A1 L1
A2 $0
L0 A1
L1 A2

Text:
ALA$

F L
$0 A0
A0 L0
A1 L1
A2 $0
L0 A1
L1 A2

Text:
LALA$

F L
$0 A0
A0 L0
A1 L1
A2 $0
L0 A1
L1 A2

Text:
ALALA$

F L
$0 A0
A0 L0
A1 L1
A2 $0
L0 A1
L1 A2

Text:
ALALA$

Figure 2.4: Reverting the BWT to obtain the original text. F and L indicate the first and last
column of the Burrows-Wheeler matrix respectively. The highlighted row in the table correspond
to the LF-mapping currently being considered, and the text above the table shows the intermediate
resulting text.

2.3.2 FM-index

The FM-index is an index, which consists of the BWT and some small auxiliary array-based
data structures, first described by Ferragina and Manzini [4]. ”FM” supposedly means ”Full-text
Minute-space” but could also refer to the authors [12]. The FM-index allows for two operations:
counting the occurrences of a query pattern, and finding the original position indices of the
pattern in the original text. Both operations are accompanied with an array-based data structure
to speed up searching.

Finding the number of occurrences of a pattern in a text also makes use the LF-mapping,
just like in figure 2.4 where we recovered the original text from T bw. The procedure involves
keeping track of a range of rows in the Burrows-Wheeler matrix which currently match the
pattern. To demonstrate the procedure we use our running example of the text ALALA and the
pattern ALA, which is shown in figure 2.5. We iterate over the characters in the pattern backwards,
and therefore start with matching the last character, namely A. The character A occurs three
times in the Burrows-Wheeler matrix, namely the rows starting with A0, A1 and A2. Using the
LF-mapping property, we can then find which characters precede these As. We find that two
preceding characters matching the L in the pattern, namely the characters L0 and L1. Continuing,
we further find that each of the Ls is preceded by an A character, which match the first character
of the pattern. We conclude that the pattern ALA occurs twice in the text ALALA.

F L
$0 A0
A0 L0
A1 L1
A2 $0
L0 A1
L1 A2

Matched:
A

F L
$0 A0
A0 L0
A1 L1
A2 $0
L0 A1
L1 A2

Matched:
LA

F L
$0 A0
A0 L0
A1 L1
A2 $0
L0 A1
L1 A2

Matched:
ALA

Figure 2.5: Iteratively finding the range of occurrences of a pattern. Each table represents a
Burrows-Wheeler matrix and its first and lats column. The text above the table shows the pattern
that has been matched. F and L indicate the first and last column of the Burrows-Wheeler matrix
respectively.

In practice, we do not keep track of each row that is matched. Rather, we can save the

13

beginning and ending row of the range of matches. This is possible because the Burrows-Wheeler
matrix is sorted lexicographically. Any matches are guaranteed to appear next to each other.

Calculating the LF-mapping each time is actually very costly and therefore Ferragina and
Manzini propose the use of a precalculated rank matrix [4, 13]. The rank matrix stores for each
position in the Burrows-Wheeler matrix, how many characters have been encountered thus far.
The rank matrix for our running example of text ALALA is shown in figure 2.6. If we start again
with the rows beginning with A0, A1 and A2 in the Burrows-Wheeler matrix, we use the rank
matrix to find which L characters are preceding. We see that before the range, no L has been
encountered. Furthermore, at the end of the range, two Ls have been encountered. Therefore we
conclude that L0 up to L1 (in this case all Ls) precede an A.

F L
$0 A0
A0 L0
A1 L1
A2 $0
L0 A1
L1 A2

$ A L

0 1 0

0 1 1

0 1 2

1 1 2

1 2 2

1 3 2

Rank matrix
Burrows-
Wheeler
matrix

Figure 2.6: The calculated rank matrix for a Burrows-Wheeler matrix.

The resulting procedure bw_count_occurences is shown as pseudocode in listing 1. The
variables start and end denote the current range, and is initialized with whole range of the last
character in the pattern. Then, we loop backwards through the pattern and narrow the range to
matching rows each iteration. The auxiliary procedure start_range returns the position of the
first row that start with the given character, which can be calculated in constant time due to the
ordering.

def bw_count_occurences(pattern):

c = pattern[-1]

i = len(pattern) - 1

start, end = character_range(c)

while start <= end and i > 0:

c = pattern[i-1]

start = start_range(c) + count_occurences(c, start-1)

end = start_range(c) + count_occurences(c, end-1)

i -= 1

if end < start:

return 0

else

return end - start

Listing 1: Pseudocode for finding the number of matches of a pattern in a text.

Having found the range of starting characters for our pattern, we want to find their positions
in the original text as well. To this end, we can use an additional data structure, called the suffix
array [11]. A suffix array stores for each character in T bw the position in the original text that
the character corresponds to.

14

In figure 2.7, the suffix array is shown for our running example of the text ALALA. We are
finally ready to identify where the pattern ALA occurs in the original text. We have previously
found that the As with rank one and two are the starting positions of the pattern within the text.
These in turn correspond to the last two As in T bw. Consulting the suffix array in figure 2.7 tells
us the pattern occurs at index zero and two in the original string. It can be easily checked that
this is correct.

T Tbw Suffix array
A A 4

L L 3

A L 1

L $ 5

A A 2

$ A 0

Figure 2.7: The original text T (ALALA), its Burrows-Wheeler transform T bw and the suffix array
are shown alongside each other.

2.4 Related Work

In this section, we summarize related work about high-level synthesis using OpenCL and string-
search algorithms.

2.4.1 OpenCL for high-level synthesis

The use of OpenCL in conjunction with FPGAs goes as far back as 2010. OpenRCL is a system
that enables executing code on an FPGA, and supports parallelization and multithreading through
the OpenCL API. However, the OpenCL code is not synthesized into hardware, but rather runs
on computing cores on the FPGA [14]. The SOpenCL system is the first synthesis tool capable
of converting OpenCL C code into synthesizable HDL [19]. In the industry, Intel has developed
its FPGA SDK for OpenCL for its FPGA hardware, while Xilinx provides its Vitis platform
(formerly SDAccel) to program Xilinx FPGAs [8, 26].

In this thesis, we use the OpenCL implementation from Xilinx’s Vitis platform. Although our
code and optimizations are designed for this specific OpenCL implementation, they should be
portable to other vendors’ platforms.

2.4.2 Optimizing OpenCL

Case studies have shown that OpenCL HLS can outperform CPUs for certain algorithms. Addi-
tionally, OpenCL HLS kernels are often more power-efficient than their CPU counterparts.

For example, Zohouri et al. present three optimization techniques to optimize the performance
of OpenCL HLS [27]. The first technique they show is explicit vectorization of loops in the
algorithm. This replaces a loop with operations that can be parallelized. Secondly, the authors
show an NDRange approach where a task is split into independent parts that are executed by
separate kernel. Finally, they show that data transfer between the host system and the kernels can
sometimes be done in bursts depending on the amount of memory on-board, to limit the number
of transfers while transferring as much data as possible at once. However, the data-transfer
technique could result in non-portable code, as the technique is optimized for a certain FPGA
architecture. The paper shows how these optimizations lead to 1.5× speedup for four of twelve
experiments conducted. Moreover, no matter what optimization applied, using the FPGA to
offload the algorithm results in 60% to 80% less energy consumption.

15

Paulino, Ferreira, and Cardoso also present a number of techniques to optimize OpenCL
HLS performance, and compare its performance to both CPUs and GPUs [20]. Firstly, using
OpenCL pragmas, one can indicate that a kernel can be replicated as separate pipelines to
exploit data parallelism. Other optimizations are loop unrolling and using shift registers when
performing calculations on floating-point numbers. Finally, for algorithms that exhibit a structured
grid computation pattern, the advanced sliding window technique can be used. The authors
investigate the performance benefits of these techniques using benchmarks from the Rodinia suite.
Experimental results from these benchmarks show that FPGAs are slightly faster than CPUs,
but not better than GPUs. The FPGAs are however up to 3.4× more energy efficient than GPUs
at executing the benchmarks using the presented optimizations.

These studies show that optimization techniques for OpenCL FPGA kernels can improve
speed and energy consumption.

2.4.3 Synthesizing FM-index

The implementation string-searching using the FM-index in hardware has been studied by
Fernandez, Najjar, and Lonardi in 2011 [3]. However, in their study, the FM-index was designed
using a hardware description language. The authors indicate up to 196× speedup when compared
to a brute-force CPU implementation. Moreover, Ullah, Ben Ahmed, and Amano researched the
synthesis of FM-index using HLS on a multi-FPGA system [23]. On a single board implementation,
the implementation was 10× faster than on a CPU. They effectively showed that using multiple
FPGAs connected in a ring network, throughput can be scaled and increased. These studies show
that accelerating string-searching using FM-index on FPGAs can result in increased throughput.

16

CHAPTER 3

Reference Application for CPU

In this chapter, we present our reference CPU application. We also present an experimental
setup, which we use the performance of the FM-index implementations.

3.1 Reference implementation

To analyze the performance of an FPGA implementation, we have programmed a CPU-based
reference implementation in the C language. We have chosen this language for its performance
and for easy portability to an FPGA kernel written in OpenCL. As will be explained in section
3.2, we will focus on analyzing the performance of string-matching, and not the construction of
the FM-index. Therefore we can precalculate all auxiliary data structures that were previously
explained in section 2.3.

3.1.1 Interface

The data structures comprising the FM-index are implemented as a C struct shown in listing 2.
The suffix array is henceforth abbreviated as sa in code listings.

typedef unsigned ranges_t;

typedef unsigned ranks_t;

typedef unsigned sa_t;

typedef struct fm_index {

char *bwt;

size_t bwt_sz;

char *alphabet;

size_t alphabet_sz;

ranks_t *ranks;

sa_t *sa;

ranges_t *ranges;

} fm_index;

Listing 2: The C struct for the FM-index. The bwt, ranks and sa data structures correspond to
the Burrows-Wheeler transform, rank matrix and suffix array respectively. The data structure
ranges is used to lookup a character in the Burrows-Wheeler matrix.

The exposed functions are presented in listing 3. The FMIndexConstruct function constructs
the FM-index from the given text, and FMIndexFree frees the FM-index and all underlying
data structures. The functions FMIndexDumpToFile and FMIndexReadFromFile can be used to
save and read an FM-index to and from a file. The flag aligned specifies whether to allocate

17

memory page-aligned, which is useful for communication with the FPGA in chapter 4. Finally, the
FMIndexFindMatchRange and FMIndexFindRangeIndices functions are used to find the indices
of a given pattern within a text, as explained in section 2.3.2. FMIndexFindMatchRange finds the
start and end of the range of matches for a pattern, and saves these in start and end respectively.
FMIndexFindRangeIndices finds all indices using the earlier acquired range, and saves them in
match_indices.

fm_index *FMIndexConstruct(char *s);

void FMIndexFree(fm_index *fm);

int FMIndexDumpToFile(fm_index *fm, char *filename);

fm_index *FMIndexReadFromFile(char *filename, int aligned);

void FMIndexFindMatchRange(fm_index *fm, char *pattern, size_t pattern_sz,

ranges_t *start, ranges_t *end);

void FMIndexFindRangeIndices(fm_index *fm, ranges_t start, ranges_t end,

unsigned long **match_indices);

Listing 3: The FM-index C functions exposed by the interface.

3.1.2 String searching

The two functions from section 3.1.1 to perform string searching using the FM-index are im-
plemented as shown in listing 4. The FMIndexFindMatchRange function closely follows the
pseudocode in listing 1. The FMIndexFindRangeIndices uses the found range of matches, and
performs a simple lookup in the suffix array to find the original indices.

void FMIndexFindMatchRange(fm_index *fm, char *pattern, size_t pattern_sz,

ranges_t *start, ranges_t *end) {

int p_idx = pattern_sz - 1;

char c = pattern[p_idx];

*start = fm->ranges[2 * string_index(fm->alphabet, c)];

*end = fm->ranges[2 * string_index(fm->alphabet, c) + 1];

p_idx -= 1;

while (p_idx >= 0 && *end > 1) {

c = pattern[p_idx];

ranges_t range_start = fm->ranges[2 * string_index(fm->alphabet, c)];

int alphabet_idx = string_index(fm->alphabet, c);

*start =

range_start + fm->ranks[fm->alphabet_sz * (*start - 1) + alphabet_idx];

*end = range_start + fm->ranks[fm->alphabet_sz * (*end - 1) + alphabet_idx];

p_idx -= 1;

}

}

void FMIndexFindRangeIndices(fm_index *fm, ranges_t start, ranges_t end,

unsigned long **match_indices) {

for (unsigned long i = 0; i < end - start; ++i)

(*match_indices)[i] = fm->sa[start + i];

}

Listing 4: The full implementation of string searching using the FM-index.

18

3.1.3 Burrows-Wheeler transform construction

We previously explained in section 2.3.1 that, in order to obtain T bw, we list all rotations of the
text and then lexicographically sort them. This would unfortunately lead to a space complexity
of O(n2) which is infeasible for large data sets. To avoid this issue, we can derive T bw from the
suffix array of the text [23]. The suffix array is essentially a Burrows-Wheeler transform, but
holds indices instead of characters. Deriving T bw is therefore as easy as indexing the text for each
index in the suffix array.

The C code for obtaining the suffix array from a text is shown in listing 5. First we simply
list all indices of the text. Then we use quicksort to sort the indices: for each pair of indices, the
strings starting from these positions are lexicographically compared.

sa_t *ConstructSuffixArray(char *text, size_t text_sz) {

sa_t *suffix_array = calloc(text_sz + 1, sizeof(sa_t));

for (size_t i = 0; i < text_sz + 1; ++i)

suffix_array[i] = i;

qsort_r(suffix_array, text_sz + 1, sizeof(sa_t), &CompareSuffixArray, text);

return suffix_array;

}

Listing 5: Generating the suffix array for a text. The auxiliary function CompareSuffixArray

lexicographically compares two suffixes, taking the sentinel character $ into account which is
always sorted first.

3.2 Experimental setup

We investigate the performance on the CPU and FPGA using two metrics found in literature. To
evaluate the overall performance, throughput is measured by counting the average amount of
patterns matched (finding the corresponding original positions) per second. As one of the main
benefits of FPGAs is energy efficiency, we also measure the energy consumption when running
the experiments.

The string searches are performed on FM-indices which we preprocess on the CPU. We use
several corpora provided by the Pizza & Chili corpus collection [5] to compute the FM-indices.
This collection is often used for text compression and indexing, and features corpora from a
diverse set of sources [15]. We use the dna, proteins and dblp.xml corpora for our experiments.
An explanation for each corpus and the alphabet size is shown in table 3.1.

Corpus Description |Σ|
dna DNA sequences provided by Project Gutenberg. The DNA bases are encoded

as A, C, G and T, but also contains special characters.
16

proteins Protein sequences provided by the Swiss-Prot database. The 20 amino acids
are encoded as upper-case letters. Also contains special characters.

27

dblp.xml Bibliographic information on computer science journals in XML format,
provided by DBLP.

97

Table 3.1: Description and alphabet size of the three corpora used from the Pizza & Chili corpus
collection.

To measure throughput, we generate as input for the experiment 7500 random patterns that
occur in the text. Generating random patterns from the alphabet alone gives too many patterns
that have no occurrences in the original text, especially for the dblp.xml corpus which has a high
alphabet size. We therefore think taking patterns that actually occur in the original text better

19

reflects a normal string search. We experiment with different pattern lengths, namely lengths 4, 6
and 8. We chose these lengths because smaller lengths would give way too many matches for
corpora with a small alphabet size, while bigger lengths would give almost no matches at all for a
large alphabet size.

We also investigate the effect of the size of the corpus. Therefore, for each corpus, we perform
experiments on 10, 15 and 20 MB versions of the corpus. We decided to use these sizes, as
larger texts would result in buffers bigger than 4 GB which are unsupported on the chosen FPGA
platform.

Energy consumption is measured for each run using Intel’s Running Average Power Limit
(RAPL). This interface enables to enforce power limits, but also to read energy consumption at
run-time [7]. It is only possible to measure the energy consumption of the entire CPU socket,
so we cannot measure the energy usage of the process our experiments are running on. This
makes energy measurements less accurate but still serves as an illustration of how much energy a
computer would consume when running the algorithm. To read the RAPL values, we use the
Power Capping Framework of the Linux kernel [2].

Lastly, each experiment is performed five times to limit variability.
The CPU experiments are performed on an Intel Xeon Gold 6128 processor [9]. This CPU

has a base frequency of 3.40 GHz.
We expect that a higher pattern length will result in a lower throughput, as string searching

using the FM-index loops over the characters of the pattern. Subsequently, we expect that the
size of the corpus has a negligible effect on the throughput. Lastly, we hypothesize that corpora
with a larger alphabet, i.e. the dblp.xml corpus, have a lower throughput, as the data structures
are larger which could negatively impact memory performance.

3.3 Results

Figure 3.1 shows the average throughput of the three corpora with different pattern length and
corpus sizes. The top throughputs reach more than 400 thousand patterns matches per second,
while we also see some in the lower ten thousands. We see that, contrary to the hypothesis, a
longer pattern generally leads to higher throughput. To explain this fact, table 3.2 shows the
average number of matches per pattern. Not surprisingly we see that longer patterns have less
occurrences than shorter ones. For shorter patterns, we therefore have to look up way more
positions in the suffix array. The memory lookups explain why longer patterns in figure 3.1 are
faster to search for.

When we look at the effect of the corpus size, we see that for the dna and dblp.xml corpora,
a bigger text leads to lower throughputs. However, the lower throughput does not seem to be
linear to the corpus size. We hypothesize that the lower throughput could be the result of worse
memory caching, as random accesses in the data FM-index data structures are more likely to
result in page faults.

20

Figure 3.1: Average throughput (in patterns matched per second) for the reference CPU applica-
tion. Different corpora, text sizes and pattern lengths are investigated and the average is taken
over 5 runs for each configuration.

We also observe that the proteins corpus has a comparable throughput independent of corpus
size or pattern length. If we again look at table 3.2, we see that the average number of matches
per pattern for the proteins corpus is comparatively low for each text size. This is seemingly a
property of this corpus: any substring of the text does not have many occurrences. This results
in fewer memory lookups for the original positions, resulting in a better throughput.

Lastly, when looking at figure 3.1 we do indeed see that the dblp.xml corpus with the high
alphabet size has a throughput almost 7× lower than the other two corpora.

Average match count

Pattern
length

dna proteins dblp.xml

10MB 15MB 20MB 10MB 15MB 20MB 10MB 15MB 20MB

4 52714 79095 99805 640 802 786 22930 33816 43540
6 4090 6166 8249 364 402 335 14903 21964 28237
8 400 591 811 270 315 250 6876 9954 12882

Table 3.2: Average amount of matches per pattern. Different corpora, text sizes and pattern
lengths are investigated and the average is taken over 5 runs for each configuration.

The average energy consumption of running the experiments is shown in figure 3.2. Note
that this figure shows the total energy consumption over the 7500 patterns. We see that the dna
corpus causes the most energy usage, with at most 160 joules when searching four-character long

21

patterns. Longer pattern lengths significantly reduce the energy consumption. We believe this
is again due to the amount of occurrences as shown in table 3.2. Searching for four-character
long patterns inside a 20MB dna corpus results in more than a hundred thousand occurrences.
The original position of each occurrence needs to be looked up, and this could cause the high
energy consumption. Furthermore, we see a very low energy consumption, around 2.5 joules, for
all experiments with the proteins corpus. Just like we concluded for the throughput results, we
believe the low energy usage could be due to the low amount of matches.

Figure 3.2: Total energy consumption (in joules) when matching 7500 patterns using the reference
CPU application. Different corpora, text sizes and pattern lengths are investigated and an average
is taken over 5 runs for each configuration.

Because the FM-index is essentially a collection of data structures, we feel it is worth mentioning
the memory footprints. Table 3.3 shows the memory footprint for the 20MB versions of the three
chosen corpora. It can be seen that there is a big difference in memory footprint between the
three corpora. This difference is the result of the alphabet size, which is highest for the dblp.xml
corpus.

22

Memory footprint of FM-indexes

Text size
Corpus

dna proteins dblp.xml

10MB 0.3GB 0.5GB 1.3GB
15MB 1.1GB 1.6GB 2.2GB
20MB 3.8GB 5.7GB 7.6GB

Table 3.3: The memory footprints of the FM-index with different corpora and text sizes.

23

24

CHAPTER 4

Reference Application for FPGA

In this chapter, we present our reference FPGA application. We also evaluate the performance of
the reference FPGA implementation using the same experimental setup used in chapter 3.

4.1 FPGA implementation

We have chosen Xilinx’s Vitis platform as it seems to be the most popular platform currently [26].
The Vitis platform allows us to write a host program that runs on the CPU that communicates,
using OpenCL bindings, with a kernel that runs on the FPGA. Both the host program and the
FPGA kernel are discussed in the following section.

4.1.1 Host program

The host program is implemented using the C++ language. OpenCL is used in the host program
to instruct and communicate with the FPGA kernel. It further uses our FM-index C library from
chapter 3 to load an FM-index file from disk into memory.

The steps performed by the host program can be seen in the following timeline:

1. Load kernel from disk and program the FPGA

2. Load FM-index and experiment data from disk

3. Enqueue OpenCL commands:

(a) Migrate experiment data and FM-index data structures to FPGA

(b) Execute FPGA kernel

(c) Migrate result data from FPGA to host program

4. Wait until all commands are handled and terminate

Note that enqueuing the OpenCL commands does not block the CPU. Therefore we must
wait until OpenCL is done handling the commands, and the data is migrated to the host.

4.1.2 FPGA kernel

The FPGA kernel receives a list of patterns, for which it must find the positions in the original
text using the FM-index. These positions are saved in a buffer and sent to the host program
when the kernel is done executing.

The FPGA kernel is programmed as an OpenCL kernel and presented in listing 6. As can be
seen, the kernel is nearly identical to the string search algorithm presented in chapter 3. Only
minimal changes are made that are required for OpenCL to function.

25

First of all, the reqd_work_group_size attribute is used to specify how much of the input
the kernel can process. However, we don’t use this feature here and we simply set the attribute
to all ones.

Next, all input buffers to the kernel have the __global attribute. This tells the compiler
these buffers are located in the global memory on the FPGA.

Lastly, the resulting positions are saved in the global out buffer. The amount of matches is
also saved in this buffer, so we can more easily verify the result on the host.

kernel __attribute__((reqd_work_group_size(1, 1, 1)))

void fmindex(__global char *bwt,

__global char *alphabet,

__global unsigned *ranks,

__global unsigned *sa,

__global unsigned *ranges,

__global char *patterns,

__global unsigned long *out,

size_t bwt_sz, size_t alphabet_sz, unsigned pattern_count,

unsigned pattern_sz, unsigned out_sz) {

for (unsigned i = 0; i < pattern_count; ++i) {

int p_idx = pattern_sz - 1;

char c = patterns[i * pattern_sz + p_idx];

unsigned start = ranges[2 * string_index(alphabet, c)];

unsigned end = ranges[2 * string_index(alphabet, c) + 1];

p_idx -= 1;

while (p_idx >= 0 && end > 1) {

c = patterns[i * pattern_sz + p_idx];

unsigned range_start = ranges[2 * string_index(alphabet, c)];

int alphabet_idx = string_index(alphabet, c);

start = range_start + ranks[alphabet_sz * (start - 1) + alphabet_idx];

end = range_start + ranks[alphabet_sz * (end - 1) + alphabet_idx];

p_idx -= 1;

}

unsigned long match_count = end - start;

out[i * out_sz] = match_count; // Save match count

for (unsigned j = 0; j < match_count; ++j)

out[i * out_sz + j + 1] = sa[start + j]; // Save match position

}

}

Listing 6: The OpenCL Kernel for the reference FPGA application.

4.2 Empirical evaluation

The same experimental setup is used to evaluate our reference FPGA application as for the
reference CPU application in section 3.2.

We use timing and power measurements generated by Vitis 1. Vitis reports the power
consumption in watts at discrete intervals. Therefore we calculate the energy consumption by
integration using Simpson’s rule.

We expect the throughput of the reference FPGA application to be much lower than the CPU
version. However, we expect that they are similar if we look at the throughput independent of
clock cycles, because the CPU runs much faster than the FPGA. In terms of energy consumption,
we expect the FPGA to use less energy than the CPU.

1Thanks Tristan Laan for the data extraction script

26

4.3 Results

In figure 4.1 the throughput (in patterns matched per second) is shown for the reference FPGA
application. Memory transfer times are not incorporated in this figure. In general, we see that
each figure resembles the CPU throughput as shown in section 3.3. The throughput of the dna
and proteins corpora is best, with 30 and 25 thousand top throughput respectively. The dblp.xml
corpus only reaches a top throughput of barely 3000 patterns matched per second.

Figure 4.1: Average throughput (in patterns matched per second) for the reference FPGA
application. Different corpora, text sizes and pattern lengths are investigated and an average is
taken over 5 runs for each configuration.

We believe it is fair not to count the memory transfer times for the FPGA application like we
did in figure 4.1. In a real-world scenario, the data would be loaded onto the FPGA only once,
and after that the real processing starts. But we still want to show how long memory transfers
take, which is shown in table 4.1. As can be seen, these times are significant and range between
0.2 to 2.4 seconds.

27

Average memory transfer times for the reference FPGA application

Pattern
length

dna proteins dblp.xml

10MB 15MB 20MB 10MB 15MB 20MB 10MB 15MB 20MB

4 1.05 s 1.54 s 1.46 s 0.26 s 0.36 s 0.44 s 1.29 s 1.86 s 2.41 s
6 0.32 s 0.49 s 0.70 s 0.24 s 0.34 s 0.42 s 1.24 s 1.84 s 2.39 s
8 0.19 s 0.30 s 0.47 s 0.23 s 0.33 s 0.42 s 0.94 s 1.35 s 1.76 s

Table 4.1: Average memory transfer times for the reference FPGA application (in seconds).
Different corpora, text sizes and pattern lengths are investigated and the average is taken over 5
runs for each configuration.

Energy measurements (in joules) of the reference FPGA application are shown in figure 4.2.
Note that this graph does not include the energy usage needed for memory transfers. The figure
closely resembles the energy measurements of the reference CPU application as shown in figure
3.2. We see again that the highest energy consumption, almost 800 J, belongs to the dna corpus
for four-character long patterns. As we have seen earlier, longer patterns cost less time to process,
and also result in lower energy consumption here. The proteins again has a comparable energy
consumption for all corpus sizes and pattern lengths of around 9 to 12 J.

Figure 4.2: Total energy consumption (in joules) when matching 7500 patterns using the reference
FPGA application. Different corpora, text sizes and pattern lengths are investigated and an
average is taken over 5 runs for each configuration.

The following list shows the resource utilization of the FPGA of the reference kernel:

1. Lookup tables (LUTs): 4313 (0.25%)

28

2. Registers: 5477 (0.19%)

3. BRAM: 2 (0.07%)

4. DSP: 14 (0.11%)

Table 4.2 shows a comparison of energy consumption between the reference FPGA and CPU
applications. It can be seen that reference FPGA application uses more energy than the CPU
version in all cases. This varies between 3.0 and 6.7 times the CPU energy consumption. The
dblp.xml corpus induces the most increases in energy usage, while the proteins corpus less. Overall,
we conclude that the reference FPGA application performs a lot worse than CPU in terms of
energy consumption.

Comparison of energy consumption between the reference FPGA and CPU applications

Pattern
length

dna proteins dblp.xml

10MB 15MB 20MB 10MB 15MB 20MB 10MB 15MB 20MB

4 4.9× 4.9× 4.8× 3.6× 3.6× 3.4× 5.0× 5.1× 5.0×
6 4.4× 4.4× 4.6× 3.9× 3.9× 3.9× 5.4× 5.3× 5.2×
8 3.1× 3.1× 3.7× 4.6× 4.5× 4.4× 6.6× 6.4× 6.1×

Table 4.2: An energy consumption comparison of the reference FPGA application and the CPU
version, expressed as energyFPGA / energyCPU. Different corpora, text sizes and pattern lengths
are investigated and an average is taken over 5 runs for each configuration.

Figure 4.3 shows the speedup of the FPGA reference application compared to the reference
CPU application. We see that in all cases that the FPGA performs 13 to 23 times worse than
the CPU version.

29

Figure 4.3: Throughput comparison between the reference FPGA application and the CPU
version, expressed as throughputCPU / throughputFPGA. Different corpora, text sizes and pattern
lengths are investigated and an average is taken over 5 runs for each configuration.

To explain why the reference FPGA application performs much worse than the CPU version,
we turn to the difference in clock speeds. The CPU has a base clock speed of 3.40 GHz, while our
FPGA kernel runs at 300 MHz. Therefore we also compare the amount of clock cycles needed to
complete each experiment on the CPU and FPGA. Figure 4.4 shows a graph of this, expressed
in the amount of CPU clock cycles divided by that of the FPGA. We see that the CPU is able
to perform the experiments in around 0.5 to 0.8 times the amount of clock cycles of the FPGA.
This means that the FPGA still performs less work per clock cycle, but it looks less pessimistic
than looking solely at the throughput.

30

Figure 4.4: Comparison of the amount of clock cycles between the reference FPGA application and
the CPU version, expressed as clock cyclesCPU / clock cyclesFPGA. Different corpora, text sizes
and pattern lengths are investigated and an average is taken over 5 runs for each configuration.

Another reason why the reference FPGA application could perform worse than the reference
CPU version, is the nature of the case study. String-searching using the FM-index relies heavily on
random memory accesses in big data structures, making it a memory-bound algorithm. It makes
sense that FPGAs perform better for more compute-intensive algorithms, because operations like
these can be synthesized on the FPGA.

31

32

CHAPTER 5

Optimizations

In this chapter, we present our optimizations to our reference FPGA application as presented in
chapter 4. We also evaluate the performance of each optimization, as well as the combination of
each optimization.

5.1 Optimizations

In this section we present two optimizations for the reference FPGA application that are found
in literature. Each optimization is applied to the reference FPGA kernel from chapter 4. Finally,
a final kernel with both optimizations applied is presented.

5.1.1 Memory optimizations

An important optimization for the FPGA is the efficient use of memory accesses. We have used
two methods to improve memory accesses.

The first method is making use of faster memory types available on the FPGA. As explained
in section 2.2, OpenCL has different memory types, that vary in scope. These different memory
types also have different characteristics, as explained in the following physical mapping of the
OpenCL memory types [25]:

• Global and constant memory : implemented as physical memory chips attached to the
FPGA.

• Local memory : implemented as Block RAM (BRAM) elements inside the FPGA fabric.

• Private memory : implemented as registers inside the FPGA fabric.

The physical RAM chips are the slowest type of memory available on the FPGA, but can
hold the most data. BRAM is faster, but it has less storage capacity. Finally, registers are the
fastest type of memory available, but is in short supply.

In order to minimize memory latency, we should access as much memory from the fastest
memory types as possible. One way of doing this is caching memory into, for example, private
memory. This is only possible for low amounts of data however.

We have identified two data structures in global memory in the reference FPGA application
which can be cached this way. These are the alphabet and ranges buffers. The alphabet buffer
simply holds the alphabet for a text, which in our case has a maximum size of 97 bytes for the
dblp.xml corpus. The ranges buffer stores the first column of the Burrows-Wheeler transform,
in the form ranges of distinct characters. This buffer is a maximum of 194 bytes long for the
dblp.xml corpus. The other buffers in global memory are hundreds of megabytes large and are no
candidates.

Listing 7 shows how this optimization is done for the alphabet buffer. The alphabet buffer
resides in global memory and will have poor memory access performance. To improve this, we
cache this data into the _alphabet buffer, which resides in private memory.

33

__private char _alphabet[MAX_ALPHABET_SZ];

for (unsigned j = 0; j < alphabet_sz; ++j)

_alphabet[j] = alphabet[j];

Listing 7: Caching global memory in private memory for more efficient memory access.

Another way to optimize memory accesses, is by using burst memory transfers. Burst memory
transfers means transferring larger amounts of memory in one go, instead of small transfers
sporadically throughout a kernel. Notice how listing 7 already does this. Global memory is
transferred in one burst to private memory, instead of sporadically accessing global memory.

We can however improve this further by pipelining the loop; listing 8 shows this concept.
The xcl_pipeline_loop attribute is a Xilinx extension of the OpenCL specification, and tells
the compiler to pipeline the loop. This means that phases of the loop, for example access-
ing the alphabet buffer, can execute simultaneously with other parts of the loop. We write
xcl_pipeline_loop(1) to indicate the loop as an initiation interval (II) of 1. The II means how
many clock cycles to wait until the next loop iteration can execute. In case of loop dependencies,
where a loop iteration depends on the previous one, the II can increase. In the case of listing 8,
there is no loop dependency and the next loop iteration can start on the very next clock cycle.

__private char _alphabet[MAX_ALPHABET_SZ];

__attribute__((xcl_pipeline_loop(1)))

for (unsigned j = 0; j < alphabet_sz; ++j)

_alphabet[j] = alphabet[j];

Listing 8: Pipelining a loop to improve performance.

The entire kernel with the above optimizations can be seen in appendix A.2.

5.1.2 OpenCL’s NDRange

As explained in section 2.2, NDRange is an important concept in OpenCL to achieve parallelism.
Xilinx’s Vitis platform supports OpenCL’s NDRange by the use of multiple compute units (CUs).

A CU is a kernel that is synthesized on the FPGA. It is possible to have multiple CUs of the
same kernel, or multiple CUs of different kernels and a mix of these. OpenCL can use multiple
CUs of the same kernel to schedule work-groups. Each CU then executes a single work-group at
a time.

Listing 9 shows the reference FPGA kernel altered for NDRange use.
First of all, the reqd_work_group_size OpenCL attribute is changed to create an appro-

priately large work-group. The index space of 7500 patterns is partitioned into work-groups
consisting of 300 work-items. The two ”1”s in the work-group size means we do not use the last
two NDRange dimensions, which makes it a one-dimensional range.

An additional attribute, xcl_zero_global_work_offset, is added to the kernel. Normally,
an offset can be specified which is used to calculate the index of work-items in the index space.
This attribute promises that this offset is always zero, and can improve performance.

Inside the kernel, the xcl_pipeline_workitems attribute encompasses the kernel code. This
enables the pipelining of work-items inside the work-group.

Finally, the OpenCL function get_global_id(0) is used to get the index of the pattern we
are processing inside a work-item. This function call essentially replaces the loop variable of i
from the reference FPGA kernel in listing 6. The argument of ”0” specifies the dimension of the
index space to query. Because our kernel is one-dimensional, this is zero (the first dimension).

34

kernel

__attribute__((reqd_work_group_size(300, 1, 1)))

__attribute__((xcl_zero_global_work_offset))

void fmindex(/* Parameters */) {

__attribute__((xcl_pipeline_workitems)) {

int i = get_global_id(0);

/* Work-item code */

}

}

Listing 9: The NDRange version of the FPGA kernel.

The host program must also be changed to execute an NDRange kernel. This change can be
seen in listing 10. The enqueueNDRangeKernel method is used to enqueue an NDRange kernel.
The arguments also specify that the offset is zero, the total amount of work is 7500 patterns, and
we partition the total work in work-groups of 300 work-items.

command_queue.enqueueTask(kernel);

// Becomes

command_queue.enqueueNDRangeKernel(kernel, 0, 7500, 300);

Listing 10: Enqueuing an NDRange kernel in the host program instead of a single kernel.

The entire kernel with the NDRange optimization can be seen in appendix A.1.

5.1.3 Combined optimizations

In addition to two kernels implementing the above optimizations, we have also developed a kernel
with both optimizations applied. This kernel can be seen in appendix A.3.

5.2 Empirical evaluation

The same experimental setup is used to evaluate our three optimized kernels as the setup in
section 3.2.

For the kernels optimized with NDRange we need to make a choice of how many compute
units to use. Therefore we have compiled the NDRange optimized kernel with different numbers
of compute units. Unfortunately, the only configuration that successfully compiled was 5 compute
units; more compute units results in errors in the compilation process. Chapter 6 goes into more
detail on this.

We expect that the NDRange optimization will improve by a significant amount, as it really
exploits paralellization. We also think the memory optimizations will improve performance a bit.
Finally, we expect the kernel with all optimizations to exceed performance of the reference CPU
application both in terms of throughput and energy usage.

5.3 Results

Figure 5.1 shows the throughput (in patterns matched per second) for the optimized kernels
alongside the references applications. We also show the same results in logarithmic scale in 5.2
because the difference in throughput is very small in some cases.

In general we see that the memory optimizations improve throughput over the reference FPGA
kernel in all cases. However, for the dblp.xml corpus and dna corpus with pattern lengths 4 and
6, this improvement is only very minor. In the other cases, the memory optimizations improve
throughput by 0.5× to almost 4×.

Interestingly, the usage of NDRange alone actually lowers throughput compared to the
reference FPGA kernel in most cases. Only for the proteins corpus with pattern lengths 6 and 8

35

does our usage of NDRange improve throughput. However, the lowered throughput for the other
cases is again minor. The low throughput seems to be the result of worse memory bandwidth
utilization, which we will address in the fully optimized kernel.

Finally, using both optimizations improves throughput most. This is best seen for the dna
corpus with pattern length 8 and the proteins corpus. Across these cases, the kernel with both
optimizations induces an improved throughput compared to the reference FPGA kernel of between
3.5× and 9.3×. Again, for the other cases, the improvement is minor.

We believe that combining the memory and NDRange optimizations causes the best throughput,
because the memory optimization is replicated across multiple compute units. Each compute
unit can therefore take advantage of better memory usage resulting in better performance.

Figure 5.1: Average throughput (in patterns matched per second) for the reference applications
and optimized kernels. Different corpora and pattern lengths are investigated, and an average is
taken over 5 runs for each configuration.

36

Figure 5.2: Average throughput (in patterns matched per second) for the reference applications
and optimized kernels. Different corpora and pattern lengths are investigated, and an average is
taken over 5 runs for each configuration. Note the y-axis has logarithmic scale.

While we have seen that the optimizations gives us better performance over the reference
FPGA application, we still cannot top the CPU version. Just like in chapter 4, we will therefore
look at the amount of clock cycles needed to perform each experiment. The results of this can
be seen in figure 5.3. We see that the FPGA kernel with both optimizations is able to perform
the experiments in less clock cycles in each case. This is most apparent for the dna corpus with
pattern length 8 and the proteins corpus, where CPU uses between 2.6 and 5.5 times the amount
of clock cycles as the FPGA.

37

Figure 5.3: Comparison of the amount of clock cycles FPGA kernels and the reference CPU
application, expressed as clock cyclesCPU / clock cyclesFPGA. Different corpora, text sizes and
pattern lengths are investigated and an average is taken over 5 runs for each configuration.

Table 5.1 shows an energy consumption comparison between the reference CPU application and
the three optimized kernels. It can be seen that the memory-optimized and NDRange-optimized
kernels both still consume more energy than the CPU version. Only the fully optimized kernel
consumes less energy for the proteins corpus with pattern lengths 6 and 8. This is not surprising
as we have previously seen that these configurations also lead to a good throughput.

Comparison of energy consumption between optimized FPGA kernels
and reference CPU application

dna proteins dblp.xml

Pattern length 4 6 8 4 6 8 4 6 8

memory 4.7× 4.3× 2.3× 2.1× 1.4× 1.1× 4.8× 4.5× 4.5×
NDRange 11.1× 10.2× 5.3× 5.0× 3.2× 2.7× 11.6× 11.2× 10.8×

full 2.8× 2.5× 1.1× 1.1× 0.6× 0.5× 2.8× 2.8× 2.7×

Table 5.1: An energy consumption comparison of the reference FPGA application and the CPU
version, expressed as energyFPGA / energyCPU. Different corpora, text sizes and pattern lengths
are investigated and an average is taken over 5 runs for each configuration.

To understand the relation between energy consumption and time better, figure 5.4 shows
two ratios alongside each other. The first is execution time, by dividing the FPGA’s execution
time by that of the reference CPU version. The second is energy, by dividing the FPGA’s energy
consumption by that of the reference CPU version. Only the fully optimized FPGA kernel is
considered for brevity. We see that in each case, while the execution time for the FPGA is higher
than for the CPU, the energy consumption does not increase accordingly. For example for the
experiment with dna corpus and pattern length 4, execution time on the FPGA is about 8× that
of the CPU, while energy consumption is only about 3× that of the CPU.

38

Figure 5.4: Comparing execution time and energy consumption between the reference CPU
application and the fully optimized FPGA kernel, expressed as timeFPGA/timeCPU and
energyFPGA/energyCPU . Different corpora, text sizes and pattern lengths are investigated
and an average is taken over 5 runs for each configuration.

Table 5.2 shows the resource utilization on the FPGA for each optimized kernel. As the
NDRange and fully optimized kernels both use multiple compute units, these kernels use much
more resources, but not nearly all resources available.

FPGA resource utilization

LUTs Registers BRAM DSP

Count % Count % Count % Count %

memory 4374 0.25 5607 0.19 2 0.07 8 0.07
NDRange 21368 1.25 29061 1.00 10 0.35 100 0.80

full 28982 1.70 36266 1.25 15 0.55 75 0.60

Table 5.2: Resource utilization for the three optimized FPGA kernels.

39

40

CHAPTER 6

Challenges

In this chapter, we discuss several challenges we encountered when developing FPGA applications
using Xilinx’s Vitis toolchain.

6.1 Toolchain

First of all, we had quite a lot of problems installing the Vitis toolchain on our development
machine. The installation process itself takes up to 5 hours, a huge portion of which is caused
by the installation server’s low upload speed of around 200 kB/s. What’s more, the installation
often hangs at the finishing phase of the installation process. After careful examination of the
installation log files, we found that the installation depends on a library which was not documented.
It would have been more useful to let the installer crash instead of hanging indefinitely.

Because of these problems, installation actually took us several days to complete. Luckily,
after installation, we did not encounter any more problems with the toolchain itself.

6.2 Development process

The development of HLS kernels with the Vitis toolchain can be split into three parts: software
emulation, hardware emulation, and hardware execution.

6.2.1 Software emulation

Compilation for software emulation is generally quite fast, with our application taking between
one and two minutes to compile. Software emulation can be used to quickly verify whether the
algorithm is functional without the constraints of the FPGA. Because of the low compilation
time, it can be used for iterative development. However, software emulation does not guarantee
that the HLS kernel can actually successfully be compiled for the FPGA.

6.2.2 Hardware emulation

Hardware emulation provides a better indication on whether an HLS kernel can successfully run
on the target FPGA. To do this, the target hardware is emulated on the CPU, and the kernel is
executed on that emulator.

For our application, compilation for hardware emulation takes between 10 and 15 minutes, so
it is best used after software emulation shows the kernel works correctly. Hardware emulation
can provide more guarantees that a kernel can run under the constraints of the target FPGA,
because the actual hardware is emulated.

A downside of hardware emulation is that only a small amount of data can be used as input
for the kernel (i.e., larger inputs result in very long emulation times). On the other hand, a small
input set might not reflect the actual input used in hardware.

41

In our specific case, hardware emulation did not work on the personal development machine
at all. Fortunately, it did work on the server where the FPGA was also hosted.

6.2.3 Hardware compilation

Finally, hardware compilation generates the bitstream of HLS kernel for the actual hardware.
This process takes the longest: for our application, it took between 2.5 and 5 hours. The upper
limit (5 hours) is only reached when increasing the number of compute units we want, because
the toolchain has to place and route these on the FPGA, which takes a lot of time.

Also, several times we encountered compilation errors when increasing the number of compute
units. These errors did not occur during hardware emulation, making hardware emulation
somewhat unreliable as a clear indicator of success in hardware. The compile errors also often
occured after several hours of compilation, making iterative development difficult.

Overall, development of OpenCL kernels for the FPGA using the Vitis toolchain was easy, as
it mostly adheres to the OpenCL standard. In some cases, vendor-specific functions were needed,
but these were well documented. As discussed above, what made development rather difficult, is
that it could take hours until feedback is given on a program’s correctness.

6.3 Results gathering

Generating timing and energy consumption reports was easy, because the Vitis toolchain handles
that directly. One point of criticism here is the format of these reports: they are generated as
CSV files, but the format of the content is not documented anywhere. This is because the files
are supposed to be interpreted by the vitis analyzer tool. After examining this tool, we were able
to infer what the data inside the reports mean.

42

CHAPTER 7

Conclusion and future work

The use of field-programmable gate arrays (FPGAs) for hardware acceleration is a recent trend,
which captured many practitioners’ attention because it promises both increased performance
and lower energy consumption compared to native applications.

FPGAs are traditionally programmed using low-level hardware-description languages (HDLs),
which are very different from modern programming languages, and thus hard to program with by
non-experts. To alleviate this challenge, and thus accelerate the adoption of FPGAs for regular
applications, many advocate the use of high-level synthesis (HLS) for FPGAs. HLS allows users
to program an FPGA using a high-level language, such as C, C++ or OpenCL. However, it can
be a challenge to efficiently program algorithms with HLS to run on an FPGA.

To investigate how well HLS-based FPGA applications perform, we have proposed a detailed,
non-trivial case-study: a substring index called FM-index, which enables quickly finding any
substring in a text. For this case-study, we ported the algorithm from CPU to FPGA using HLS,
and further investigated possible improvements for increasing performance. Our HLS language
of choice is OpenCL (a standard designed for heterogeneous computing), and we evaluated the
results in hardware, using a Xilinx U250 FPGA as accelerator.

7.1 Main findings

We structured our research in three phases, each driven by one research question. We formulate
the answers to these questions in the following paragraphs.

Subquestion 1: How does a naive HLS-based FPGA application compare against its CPU counterpart?
We addressed this question by comparing a CPU and FPGA reference application. The design
and implementation of the reference CPU application is presented in chapter 3, while chapter
4 presented the reference FPGA version. We further compared the FPGA and CPU reference
versions through a comprehensive empirical analysis. In this setup, we measure string-search
throughput and energy consumption, and investigate different corpora, text sizes and search
pattern lengths.

Our results show that, compared to the sequential CPU version, our naive FPGA application
has a throughput 13× to 23× lower. However, we attribute much of this difference to the
difference in clock speed: the CPU runs at 3.4 GHz while the FPGA runs at 300 MHz. If we
instead compare clock cycles, we find that the FPGA’s performance reaches as high as 80% of
the performance of the CPU version. Moreover, the energy consumption of the reference FPGA
application is considerably worse when compared against the CPU version: the FPGA uses 3.0×
to 6.7× more energy than the CPU.

Subquestion 2: What optimizations can improve the performance of an HLS-based FPGA application?
In chapter 5, we have explored two different kinds of optimizations for our reference FPGA
application: improving memory usage and using multiple compute units with OpenCL’s NDRange.

43

The memory-optimized kernel makes more efficient use of the memory model of OpenCL,
and transfers memory in burst where possible. This optimization resulted in at most 4× higher
throughput over the reference FPGA kernel.

The NDRange-optimized kernel exploits parallelism by using multiple compute units on the
FPGA. This optimization has generally led to decreased throughput. The low performance
seems to be the result of worse memory bandwidth utilization, but this is addressed in the fully
optimized kernel.

The fully optimized kernel, employing both optimizations, achieves the best throughput with
3.5× to 9.3× that of the reference FPGA kernel. However, the FPGA was not able to beat the
CPU version in any experiment in terms of throughput.

We have also looked at the clock cycles needed to perform each experiment with the optimized
kernels. We have found that the fully optimized kernel needed less clock cycles than the CPU
version for each experiment: in fact, the CPU version uses 2.6× to 5.5× more clock cycles than
the fully-optimized FPGA kernel.

Lastly, the energy consumption of the fully optimized FPGA kernel is, in most cases, worse
than that of the CPU version. However, there are two instances where the fully optimized FPGA
kernel use half the energy that the CPU version does.

Subquestion 3: How difficult is it to develop FPGA applications using HLS? Overall, programming
FPGA kernels in OpenCL itself has been easy, as OpenCL is widely-used and many resources
exist. However, using the Vitis toolchain has been sifnificantly more difficult. Installing the
toolchain took several days because of errors during installation. While software and hardware
emulation is useful for quickly checking functionality of a kernel, we have experienced several
instances where it ran successfully, while the compilation for hardware failed. The long compile
times for hardware also made iterative development difficult.

We conclude that using HLS does result in quick development time, but the overall performance is
limited. With the added optimizations, however, the HLS version of our case-study did outperform
the CPU version in terms of cycles, but not in terms of execution time (due to the clock speed
difference).

7.2 Contributions

This research makes the following contributions:

• We propose the first Xilinx Vitis implementation for the FM-index algorithm, together with
its performance evaluation.

• We demonstrate the implementation of two optimizations recommended by literature in
our HLS version of he application, and evaluate their impact on performance.

• We provide considerations on the difficulties of going from beginner to programmer for
FPGAs using Xilinx’s Vitis platform.

7.3 Limitations and threats to validity

A major limitation of our research is that we have only investigated the performance of a
single algorithm. The case study of a string-searching algorithm is mostly memory-bound, so
investigating a more compute-bound algorithm would help generalize our conclusions.

Another limitation is the fixed number (5) of compute units for the NDRange-optimized
kernel. We encountered compile errors when increasing the number of compute units, so only 5
compute units are used.

Furthermore, we have used relatively small text sizes during our experiments. Larger sizes can
result in the data structures of the FM-index becoming larger than 4GB, which is a buffer size not
supported by the Vitis platform. Real-world applications use the FM-index for searching in DNA,

44

which can be multiple gigabytes large (if each chromosome is a character). Our implementation
does not scale to these ranges.

Lastly, experiments were performed in only one environment. To better generalize our
conclusions, the experiments should be executed on multiple CPUs, FPGAs and FPGA platforms.

7.4 Ethical considerations

We believe there are no ethical problems with our methods nor the research field. The selected
case study is mainly used in bioinformatics, and used to understand genomes and proteins and
ultimately could help medicine research. Therefore, we think this case study is morally responsible.
FPGAs simply provide another way to perform calculations, so in essence it does not introduce
any new ethical considerations.

7.5 Future work

Although we have explored two different kinds of optimizations for the FPGA kernel, there are
many more optimizations possible. For example, the Vitis documentation has extensive guidance
on optimizing the use of different memory banks available on the FPGA.

Another angle for future research is to propose improvements for the FM-index. Since the
release of the original paper on FM-index, Manzini and Venturini have developed improvements
on the search algorithm [16]. Another improvement by Ferragina et al. reduces the space
occupancy of the index [6]. It would be interesting to see whether these are portable to our FPGA
implementation.

Finally, to assess the performance of HLS against more traditional FPGA programming
languages, a VHDL or Verilog version of the application should be developed. In turn, this will
demonstrate whether HLS can be a competitive alternative when compared with a low-level,
dedicated FPGA solution.

45

46

Bibliography

[1] Michael Burrows and David Wheeler. A Block-Sorting Lossless Data Compression Algorithm.
Tech. rep. DIGITAL SRC RESEARCH REPORT, 1994.

[2] The kernel development community. Power Capping Framework — The Linux Kernel
documentation. url: https://www.kernel.org/doc/html/latest/power/powercap/
powercap.html (visited on 05/21/2021).

[3] E. Fernandez, W. Najjar, and S. Lonardi. “String Matching in Hardware Using the FM-
Index”. In: 2011 IEEE 19th Annual International Symposium on Field-Programmable
Custom Computing Machines. May 2011, pp. 218–225. doi: 10.1109/FCCM.2011.55.

[4] P. Ferragina and G. Manzini. “Opportunistic data structures with applications”. In: Pro-
ceedings 41st Annual Symposium on Foundations of Computer Science. ISSN: 0272-5428.
Nov. 2000, pp. 390–398. doi: 10.1109/SFCS.2000.892127.

[5] Paolo Ferragina and Gonzalo Navarro. Pizza&Chili Corpus – Compressed Indexes and their
Testbeds. url: http://pizzachili.dcc.uchile.cl/index.html (visited on 04/21/2021).

[6] Paolo Ferragina et al. “An Alphabet-Friendly FM-Index”. en. In: String Processing and
Information Retrieval. Ed. by Alberto Apostolico and Massimo Melucci. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2004, pp. 150–160. isbn: 978-3-540-30213-1.
doi: 10.1007/978-3-540-30213-1_23.

[7] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer Manual: Vol
3. en. 2016. url: https://www.intel.com/content/www/us/en/architecture-and-
technology/64-ia-32-architectures-software-developer-system-programming-

manual-325384.html (visited on 05/21/2021).

[8] Intel Corporation. Intel® FPGA SDK for OpenCL™ - Intel FPGA SDK for OpenCL.
url: https : / / www . intel . com / content / www / us / en / programmable / products /

design- software/embedded- software- developers/opencl/support.html (visited
on 05/17/2021).

[9] Intel Corporation. Intel® Xeon® Gold 6128 Processor (19.25M Cache, 3.40 GHz) Product
Specifications. en. url: https://ark.intel.com/content/www/us/en/ark/products/
120482/intel-xeon-gold-6128-processor-19-25m-cache-3-40-ghz.html (visited on
05/13/2021).

[10] Ian Kuon, Russell Tessier, and Jonathan Rose. FPGA Architecture: Survey and Challenges.
isbn: 978-1-60198-127-1.

[11] Ben Langmead. “Burrows-Wheeler Transform and FM Index”. en. In: Technical Report (Jan.
2014), p. 41. url: https://www.cs.jhu.edu/~langmea/resources/lecture_notes/bwt_
and_fm_index.pdf (visited on 05/26/2021).

[12] Ben Langmead. “Introduction to the Burrows-Wheeler Transform and FM Index”. en. In:
(Nov. 2013), p. 12. url: https://www.cs.jhu.edu/~langmea/resources/bwt_fm.pdf
(visited on 05/26/2021).

47

https://www.kernel.org/doc/html/latest/power/powercap/powercap.html
https://www.kernel.org/doc/html/latest/power/powercap/powercap.html
https://doi.org/10.1109/FCCM.2011.55
https://doi.org/10.1109/SFCS.2000.892127
http://pizzachili.dcc.uchile.cl/index.html
https://doi.org/10.1007/978-3-540-30213-1_23
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.com/content/www/us/en/programmable/products/design-software/embedded-software-developers/opencl/support.html
https://www.intel.com/content/www/us/en/programmable/products/design-software/embedded-software-developers/opencl/support.html
https://ark.intel.com/content/www/us/en/ark/products/120482/intel-xeon-gold-6128-processor-19-25m-cache-3-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120482/intel-xeon-gold-6128-processor-19-25m-cache-3-40-ghz.html
https://www.cs.jhu.edu/~langmea/resources/lecture_notes/bwt_and_fm_index.pdf
https://www.cs.jhu.edu/~langmea/resources/lecture_notes/bwt_and_fm_index.pdf
https://www.cs.jhu.edu/~langmea/resources/bwt_fm.pdf

[13] Ben Langmead et al. “Ultrafast and memory-efficient alignment of short DNA sequences
to the human genome”. en. In: Genome Biology 10.3 (Mar. 2009). Number: 3 Publisher:
BioMed Central, pp. 1–10. issn: 1474-760X. doi: 10.1186/gb-2009-10-3-r25. url:
https://genomebiology.biomedcentral.com/articles/10.1186/gb-2009-10-3-r25

(visited on 04/18/2021).

[14] Mingjie Lin, Ilia Lebedev, and John Wawrzynek. “OpenRCL: Low-Power High-Performance
Computing with Reconfigurable Devices”. In: 2010 International Conference on Field
Programmable Logic and Applications. ISSN: 1946-1488. Aug. 2010, pp. 458–463. doi:
10.1109/FPL.2010.93.

[15] Veli Mäkinen and Gonzalo Navarro. “Compressed full-text indexes”. In: ACM Computing
Surveys 39.1 (Apr. 2007), 2–es. issn: 0360-0300. doi: 10.1145/1216370.1216372. url:
https://doi.org/10.1145/1216370.1216372 (visited on 04/19/2021).

[16] Paolo Manzini and Rossano Venturini. FM-Index Version 2. Tech. rep. Sept. 2005. url:
https://pages.di.unipi.it/ferragina/Libraries/fmindexV2/index.html (visited
on 05/30/2021).

[17] Aaftab Munshi. “The OpenCL specification”. In: 2009 IEEE Hot Chips 21 Symposium
(HCS). Aug. 2009, pp. 1–314. doi: 10.1109/HOTCHIPS.2009.7478342.

[18] R. Nane et al. “A Survey and Evaluation of FPGA High-Level Synthesis Tools”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 35.10 (Oct.
2016). Conference Name: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, pp. 1591–1604. issn: 1937-4151. doi: 10.1109/TCAD.2015.2513673.

[19] Muhsen Owaida et al. “Synthesis of Platform Architectures from OpenCL Programs”.
In: 2011 IEEE 19th Annual International Symposium on Field-Programmable Custom
Computing Machines. May 2011, pp. 186–193. doi: 10.1109/FCCM.2011.19.

[20] N. Paulino, J. C. Ferreira, and J. M. P. Cardoso. “Optimizing OpenCL Code for Performance
on FPGA: k-Means Case Study With Integer Data Sets”. In: IEEE Access 8 (2020).
Conference Name: IEEE Access, pp. 152286–152304. issn: 2169-3536. doi: 10.1109/

ACCESS.2020.3017552.

[21] Jared T. Simpson and Richard Durbin. “Efficient construction of an assembly string
graph using the FM-index”. In: Bioinformatics 26.12 (June 2010), pp. i367–i373. issn:
1367-4803. doi: 10.1093/bioinformatics/btq217. url: https://doi.org/10.1093/
bioinformatics/btq217 (visited on 06/04/2021).

[22] The Khronos Group Inc. The Khronos Group. en. Section: General. May 2021. url: https:
//www.khronos.org (visited on 05/25/2021).

[23] M. M. Imdad Ullah, Akram Ben Ahmed, and Hideharu Amano. “Implementation of FM-
Index Based Pattern Search on a Multi-FPGA System”. en. In: Applied Reconfigurable
Computing. Architectures, Tools, and Applications. Ed. by Fernando Rincón et al. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2020, pp. 376–391.
isbn: 978-3-030-44534-8. doi: 10.1007/978-3-030-44534-8_28.

[24] Xilinx Inc. “Introduction to FPGA Design with Vivado High-Level Synthesis (UG998)”.
en. In: (Jan. 2019), p. 92. url: https://www.xilinx.com/support/documentation/sw_
manuals/ug998-vivado-intro-fpga-design-hls.pdf (visited on 05/24/2021).

[25] Xilinx Inc. Private Memory. en-us. concept. url: https://www.xilinx.com/html_docs/
xilinx2017_4/sdaccel_doc/dli1504034322329.html (visited on 05/26/2021).

[26] Xilinx Inc. Vitis Platform. en. url: https://www.xilinx.com/products/design-

tools/vitis/vitis-platform.html (visited on 05/14/2021).

[27] Hamid Reza Zohouri et al. “Evaluating and optimizing OpenCL kernels for high perfor-
mance computing with FPGAs”. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. SC ’16. Salt Lake City, Utah:
IEEE Press, Nov. 2016, pp. 1–12. isbn: 978-1-4673-8815-3. (Visited on 04/07/2021).

48

https://doi.org/10.1186/gb-2009-10-3-r25
https://genomebiology.biomedcentral.com/articles/10.1186/gb-2009-10-3-r25
https://doi.org/10.1109/FPL.2010.93
https://doi.org/10.1145/1216370.1216372
https://doi.org/10.1145/1216370.1216372
https://pages.di.unipi.it/ferragina/Libraries/fmindexV2/index.html
https://doi.org/10.1109/HOTCHIPS.2009.7478342
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1109/FCCM.2011.19
https://doi.org/10.1109/ACCESS.2020.3017552
https://doi.org/10.1109/ACCESS.2020.3017552
https://doi.org/10.1093/bioinformatics/btq217
https://doi.org/10.1093/bioinformatics/btq217
https://doi.org/10.1093/bioinformatics/btq217
https://www.khronos.org
https://www.khronos.org
https://doi.org/10.1007/978-3-030-44534-8_28
https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/dli1504034322329.html
https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/dli1504034322329.html
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html

49

APPENDIX A

Optimized kernels

A.1 NDRange optimized kernel

#define LOCAL_SIZE 300

kernel

__attribute__((reqd_work_group_size(LOCAL_SIZE, 1, 1)))

__attribute__((xcl_zero_global_work_offset))

void fmindex(__global char *bwt,

__global char *alphabet,

__global unsigned *ranks,

__global unsigned *sa,

__global unsigned *ranges,

__global char *patterns,

__global unsigned long *out,

size_t bwt_sz, size_t alphabet_sz, unsigned pattern_count,

unsigned pattern_sz, unsigned out_sz) {

__attribute__((xcl_pipeline_workitems)) {

int i = get_global_id(0);

int p_idx = pattern_sz - 1;

char c = patterns[i * pattern_sz + p_idx];

int alphabet_idx = string_index(alphabet, c);

unsigned start = ranges[2 * alphabet_idx];

unsigned end = ranges[2 * alphabet_idx + 1];

p_idx -= 1;

while (p_idx >= 0 && end > 1) {

c = patterns[i * pattern_sz + p_idx];

alphabet_idx = string_index(alphabet, c);

unsigned range_start = ranges[2 * alphabet_idx];

start = range_start + ranks[alphabet_sz * (start - 1) + alphabet_idx];

end = range_start + ranks[alphabet_sz * (end - 1) + alphabet_idx];

p_idx -= 1;

}

unsigned long match_count = end - start;

out[i * out_sz] = match_count;

for (unsigned j = 0; j < match_count; ++j)

out[i * out_sz + j + 1] = sa[start + j];

}

}

50

A.2 Memory-access optimized kernel

#define MAX_PATTERN_SZ 8

#define MAX_ALPHABET_SZ 97

#define MAX_RANGES_SZ (2 * MAX_ALPHABET_SZ)

kernel

__attribute__((reqd_work_group_size(1, 1, 1)))

void fmindex(__global char *bwt,

__global char *alphabet,

__global unsigned *ranks,

__global unsigned *sa,

__global unsigned *ranges,

__global char *patterns,

__global unsigned long *out,

size_t bwt_sz, size_t alphabet_sz, unsigned pattern_count,

unsigned pattern_sz, unsigned out_sz) {

__private char _alphabet[MAX_ALPHABET_SZ];

__attribute__((xcl_pipeline_loop(1)))

for (unsigned j = 0; j < alphabet_sz; ++j)

_alphabet[j] = alphabet[j];

__private unsigned _ranges[MAX_RANGES_SZ];

__attribute__((xcl_pipeline_loop(1)))

for (unsigned j = 0; j < 2 * alphabet_sz; ++j)

_ranges[j] = ranges[j];

for (unsigned i = 0; i < pattern_count; ++i) {

__private char pattern[MAX_PATTERN_SZ];

__attribute__((xcl_pipeline_loop(1)))

for (unsigned j = 0; j < pattern_sz; ++j)

pattern[j] = patterns[i * pattern_sz + j];

int p_idx = pattern_sz - 1;

char c = pattern[p_idx];

int alphabet_idx = string_index(_alphabet, c);

unsigned start = _ranges[2 * alphabet_idx];

unsigned end = _ranges[2 * alphabet_idx + 1];

p_idx -= 1;

while (p_idx >= 0 && end > 1) {

c = pattern[p_idx];

alphabet_idx = string_index(_alphabet, c);

unsigned range_start = _ranges[2 * alphabet_idx];

start = range_start + ranks[alphabet_sz * (start - 1) + alphabet_idx];

end = range_start + ranks[alphabet_sz * (end - 1) + alphabet_idx];

p_idx -= 1;

}

unsigned long match_count = end - start;

out[i * out_sz] = match_count;

__attribute__((xcl_pipeline_loop(1)))

for (unsigned j = 0; j < match_count; ++j)

out[i * out_sz + j + 1] = sa[start + j];

}

}

51

A.3 Final optimized kernel

#define LOCAL_SIZE 300

#define MAX_PATTERN_SZ 8

#define MAX_ALPHABET_SZ 97

#define MAX_RANGES_SZ (2 * MAX_ALPHABET_SZ)

#define PATTERNS_SZ (MAX_PATTERN_SZ * LOCAL_SIZE)

kernel

__attribute__((reqd_work_group_size(LOCAL_SIZE, 1, 1)))

__attribute__((xcl_zero_global_work_offset))

void fmindex(__global char *bwt,

__global char *alphabet,

__global unsigned *ranks,

__global unsigned *sa,

__global unsigned *ranges,

__global char *patterns,

__global unsigned long *out,

size_t bwt_sz, size_t alphabet_sz, unsigned pattern_count,

unsigned pattern_sz, unsigned out_sz) {

int group_id = get_group_id(0);

__local char _patterns[PATTERNS_SZ];

__attribute__((xcl_pipeline_loop(1)))

for (unsigned i = 0; i < PATTERNS_SZ; ++i)

_patterns[i] = patterns[group_id * PATTERNS_SZ + i];

__attribute__((xcl_pipeline_workitems)) {

int work_id = get_global_id(0);

int local_id = get_local_id(0);

__private char _alphabet[MAX_ALPHABET_SZ];

__attribute__((xcl_pipeline_loop(1)))

for (unsigned i = 0; i < alphabet_sz; ++i)

_alphabet[i] = alphabet[i];

__private unsigned _ranges[MAX_RANGES_SZ];

__attribute__((xcl_pipeline_loop(1)))

for (unsigned i = 0; i < 2 * alphabet_sz; ++i)

_ranges[i] = ranges[i];

int p_idx = pattern_sz - 1;

char c = _patterns[local_id * pattern_sz + p_idx];

int alphabet_idx = string_index(_alphabet, c);

unsigned start = _ranges[2 * alphabet_idx];

unsigned end = _ranges[2 * alphabet_idx + 1];

p_idx -= 1;

while (p_idx >= 0 && end > 1) {

c = _patterns[local_id * pattern_sz + p_idx];

alphabet_idx = string_index(_alphabet, c);

unsigned range_start = _ranges[2 * alphabet_idx];

start = range_start + ranks[alphabet_sz * (start - 1) + alphabet_idx];

end = range_start + ranks[alphabet_sz * (end - 1) + alphabet_idx];

p_idx -= 1;

}

unsigned long match_count = end - start;

out[work_id * out_sz] = match_count;

__attribute__((xcl_pipeline_loop(1)))

for (unsigned i = 0; i < match_count; ++i)

out[work_id * out_sz + i + 1] = sa[start + i];

}

}

52

	Introduction & Research Question
	Introduction
	Research Question
	Outline

	Background & Related Work
	Field-programmable gate arrays
	Choosing hardware platform
	FPGA architecture

	OpenCL
	String matching algorithm
	Burrows-Wheeler transform
	FM-index

	Related Work
	OpenCL for high-level synthesis
	Optimizing OpenCL
	Synthesizing FM-index

	Reference Application for CPU
	Reference implementation
	Interface
	String searching
	Burrows-Wheeler transform construction

	Experimental setup
	Results

	Reference Application for FPGA
	FPGA implementation
	Host program
	FPGA kernel

	Empirical evaluation
	Results

	Optimizations
	Optimizations
	Memory optimizations
	OpenCL's NDRange
	Combined optimizations

	Empirical evaluation
	Results

	Challenges
	Toolchain
	Development process
	Software emulation
	Hardware emulation
	Hardware compilation

	Results gathering

	Conclusion and future work
	Main findings
	Contributions
	Limitations and threats to validity
	Ethical considerations
	Future work

	Optimized kernels
	NDRange optimized kernel
	Memory-access optimized kernel
	Final optimized kernel

